If f(x) = 5(x + 4) - 6
then y = 5(x + 4) - 6
By interchanging x & y
⇒ x = 5(y + 4) - 6
⇒ [tex] \frac{x + 6}{5} [/tex] = y + 4
⇒ y = [tex] \frac{x - 14}{5} [/tex]
∴ f⁻¹(x) = [tex] \frac{x - 14}{5} [/tex]
When x = 19 ;
f⁻¹(19) = [tex] \frac{19 - 14}{5} [/tex]
= 1
∴ when x= 19 the inverse is equal to 1.