a flat screen television has a length that is 1 more inch than its width the area of the television screen is 1500 in . to the nearest whole inch what are the dimensions of the television?
w+1=l area=lw area=(w+1)w 1500=w²+w minus 1500 both sides 0=w²+w-1500 use quadratic formula for aw²+bw+c=0 [tex]w= \frac{-b+/- \sqrt{b^2-4ac} }{2a} [/tex]
[tex]w= \frac{-(1)+/- \sqrt{1^2-4(1)(-1500)} }{2(1)} [/tex] [tex]w= \frac{-1+/- \sqrt{1+6000} }{2} [/tex] [tex]w= \frac{-1+/- \sqrt{6001} }{2} [/tex] 77.466121627457250675410729387462 [tex]w= \frac{-1+/- 77.466121627457250675410729387462}{2} [/tex] it can't be minus since measures cannot be negative [tex]w= \frac{-1+ 77.466121627457250675410729387462}{2} [/tex] [tex]w= \frac{76.466121627457250675410729387462}{2} [/tex] w=38.233060813728625337705364693731 to nearest whole w=38 l=38+1=39