Perform the following division and write the quotient in trigonometric form. Write the magnitude in exact form. Write the argument in radians and round it to twodecimal places if necessary.

Perform the following division and write the quotient in trigonometric form Write the magnitude in exact form Write the argument in radians and round it to twod class=

Respuesta :

[tex]\text{ }\frac{-4\text{ - 2i }}{\text{ 3 + 2i}}[/tex]

Let's apply the Complex Arithmetic Rule:

[tex]\frac{a+bi}{c+di}\:=\:\frac{\left(c-di\right)\left(a+bi\right)}{\left(c-di\right)\left(c+di\right)}\:=\:\frac{\left(ac+bd\right)+\left(bc-ad\right)i}{c^2+d^2}[/tex]

We have: a = -4, b = -2, c = 3 & d = 2

[tex]\frac{\left(-4\cdot \:3+\left(-2\right)\cdot \:2\right)+\left(-2\cdot \:3-\left(-4\right)\cdot \:2\right)i}{3^2+2^2}[/tex][tex]\frac{(-12\text{ - 4\rparen + \lparen-6 + 8\rparen i}}{9\text{ + 4}}[/tex][tex]\frac{-16+2i}{13}[/tex]